Part Number Hot Search : 
S1503 60001 LBS11902 ECWF2225 SGM9111 D213ED ADAM6060 29LV033
Product Description
Full Text Search
 

To Download MB3825A Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 FUJITSU SEMICONDUCTOR DATA SHEET
DS04-27220-5E
ASSP For Power Supply Applications
6-ch DC/DC Converter IC With Synchronous Rectifier
MB3825A
s DESCRIPTION
The MB3825A is a pulse width modulation (PWM) type 6-channel DC/DC converter IC with synchronous rectification (2-channels) designed for low voltage, high efficiency operation in high precision and high frequency applications, ideal for down conversion. The MB3825A is an ideal device offering low power consumption, compact size and light weight for products such as self-contained camcorders and digital still cameras. This product is covered by US Patent Number 6,147,477.
s FEATURES
* * * * * * * Synchronous rectification (channels 1 and 4) High efficiency drive with power-on output enhanced by built-in speed-up circuit Wide range of operating power supply voltage : 2.5 V to 12 V Built-in high-precision reference voltage generator : 1.5 V 1% Wide operating oscillator frequency range, high frequency capability : 50 kHz to 800 kHz Wide input voltage range (all channels) : 0 V to Vcc - 0.9 V Error amplifier output for soft-start (channels 1, 2, 4) (All channels may be set for same soft-start time regardless of duty factor setting.)
s PACKAGE
64-pin plastic LQFP 64-pin plastic LQFP
(FPT-64P-M03)
(FPT-64P-M20)
MB3825A
s PIN ASSIGNMENT
GND (O) 4, 5, 6
VCC (O) 4, 5, 6
GND (O) 1, 2, 3
VCC (O) 2
OUT2-4
OUT1-4
OUT1-3
OUT1-5
OUT1-2 50
CB1-4
CB2-4
CB2-3
CB1-3
64
63
62
VB4
61
60
59
58
57
56
55
54
53
52
51
49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33
CB2-2
VB3
CB2-5 CB1-5 VB5 OUT1-6 CB2-6 CB1-6 VB6 OVP5, 6 IN (C) 6 +IN (E) 6 -IN (E) 6 FB6 SCP IN (C) 5 +IN (E) 5 -IN (E) 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
CB1-2 VB2 OUT1-1 CB2-1 CB1-1 OUT2-1 VCC (O) 1, 3 VB1 IN (C) 1 -IN (E) 1 FB1 IN (C) 2 -IN (E) 2 FB2 IN (C) 3 -IN (E) 3
FB5
IN (C) 4
-IN (E) 4
FB4
RT
CT
CSCP
GND1
GND2
CS
VREF
VCC
CTL2
CTL1
DTC3
2
FB3
MB3825A
s PIN DESCRIPTION
Pin No. 38 39 40 CH 1 46 43 44 45 41 35 36 37 CH 2 50 48 49 47 32 33 34 CH 3 56 54 55 52 31 20 19 18 CH 4 57 60 59 58 62 Symbol FB1 -IN (E) 1 IN (C) 1 OUT1-1 OUT2-1 CB1-1 CB2-1 VB1 FB2 -IN (E) 2 IN (C) 2 OUT1-2 CB1-2 CB2-2 VB2 FB3 -IN (E) 3 IN (C) 3 OUT1-3 CB1-3 CB2-3 VB3 DTC3 FB4 -IN (E) 4 IN (C) 4 OUT1-4 OUT2-4 CB1-4 CB2-4 VB4 I/O O I I O O O I I O O I I O I O I I O O Descriptions Channel 1 error amplifier output terminal. Channel 1 error amplifier inverted input terminal. Channel 1 short detection comparator input terminal. Channel 1 main side output terminal. Channel 1 synchronous rectifier side output terminal. Channel 1 boot capacitor connection terminal. Channel 1 output sink current setting terminal. Channel 2 error amplifier output terminal. Channel 2 error amplifier inverted input terminal. Channel 2 short detection comparator input terminal. Channel 2 output terminal. Channel 2 boot capacitor connection terminal. Channel 2 output sink current setting terminal. Channel 3 error amplifier output terminal. Channel 3 error amplifier inverted input terminal. Channel 3 short detection comparator input terminal. Channel 3 output terminal. Channel 3 boot capacitor connection terminal. Channel 3 output sink current setting terminal. Channel 3 dead time control terminal. Channel 4 error amplifier output terminal. Channel 4 error amplifier inverted input terminal. Channel 4 short detection comparator input terminal. Channel 4 main side output terminal. Channel 4 synchronous rectifier side output terminal. Channel 4 boot capacitor connection terminal. Channel 4 output sink current setting terminal.
(Continued)
3
MB3825A
Pin No. 17 16 15 14 CH 5 64 2 1 3 8 12 11 10 9 CH 6 4 6 5 7 8 TriangularWave Oscillator Circuit 21 22
Symbol FB5 -IN (E) 5 +IN (E) 5 IN (C) 5 OUT1-5 CB1-5 CB2-5 VB5 OVP5, 6 FB6 -IN (E) 6 +IN (E) 6 IN (C) 6 OUT1-6 CB1-6 CB2-6 VB6 OVP5, 6 RT CT
I/O O I I I O I O I I I O I I
Descriptions Channel 5 error amplifier output terminal. Channel 5 error amplifier inverted input terminal. Channel 5 error amplifier non-inverted input terminal. Channel 5 short detection comparator input terminal. Channel 5 output terminal. Channel 5 boot capacitor connection terminal. Channel 5 output sink current setting terminal. Channel 5, 6 output maximum voltage setting terminal. Channel 6 error amplifier output terminal. Channel 6 error amplifier inverted input terminal. Channel 6 error amplifier non-inverted input terminal. Channel 6 short detection comparator input terminal. Channel 6 output terminal. Channel 6 boot capacitor connection terminal. Channel 6 output sink current setting terminal. Channel 5, 6 output maximum voltage setting terminal. Triangular wave frequency setting resistor connection terminal. Triangular wave frequency setting capacitor connection terminal. Power supply control circuit. "H" level : Power supply operating mode "L" level : Standby mode Channel 3 control circuit. When CTL1 terminal is "H" level "H" level : Channel 3 in operating mode "L" level : Channel 3 in OFF mode Short detection comparator input terminal. Short protection circuit capacitor connection terminal. Soft-start circuit capacitor connection terminal.
30
CTL1
Control Circuit
29
CTL2
I
13 23 26
SCP CSCP CS
I
(Continued)
4
MB3825A
(Continued) Pin No.
28 42 51 63 Power Supply Circuit 27 24 25 53 61
Symbol VCC VCC (O) 1, 3 VCC (O) 2 VCC (O) 4, 5, 6 VREF GND1 GND2 GND (O) 1, 2, 3 GND (O) 4, 5, 6
I/O O
Descriptions Reference voltage and control circuit power supply terminal. Output circuit power supply terminal (Channel 1, 3) . Output circuit power supply terminal (Channel 2) . Output circuit power supply terminal (Channel 4, 5, 6) . Reference voltage output terminal. Ground terminal. Ground terminal. Output circuit ground terminal (Channel 1, 2, 3) . Output circuit ground terminal (Channel 4, 5, 6) .
5
MB3825A
s BLOCK DIAGRAM
* General view

FB1 38 39 -IN(E)1 - + + 1.5 V 70 mV 40 IN(C)1 - + 1.5 V SCP Comp.1 + - PWM Comp.1-2 Drive 1-2 43 OUT2-1 Error Amp.1 + - PWM Comp.1-1 Drive 1-1 VCC(O)1, 3 42 CB1-1 44 45 CB2-1 46 OUT1-1 41 VB1
A

FB2 35 36 -IN(E)2 - + + 1.5 V 47 - + 1.5 V SCP Comp.2 VB2 Error Amp.2 PWM Comp.2 + - Drive 2 VCC(O)2 51 CB1-2 48 49 CB2-2 50 OUT1-2
IN(C)2
37

FB3 32 33 -IN(E)3 - + 1.5 V CTL2 29 IN(C)3 34 - + 1.5 V 31 SCP Comp.3 53 GND(O)1, 2, 3 52 VB3 Error Amp.3 + + - PWM Comp.3 Drive 3 CB1-3 54 55 56 OUT1-3 CB2-3
DTC3

FB4 20 19 -IN(E)4 - + + 1.5 V 70 mV SCP Comp.4 + - PWM Comp.4-2 Drive 4-2 Error Amp.4 PWM Comp.4-1 + - Drive 4-1
VCC(O)4, 5, 6 63 CB1-4 59 58 57 OUT1-4 62 VB4 60 OUT2-4 CB2-4
B
IN(C)4
18
- +
1.5 V
FB5 17 16 -IN(E)5 - + + Error Amp.5 PWM Comp.5 + -

2 1 Drive 5 64 OUT1-5 3 VB5 CB1-5
CB2-5
IN(C)5 14 15 +IN(E)5
0.6 V - +
SCP Comp.5
FB6 12 11 -IN(E)6 - + + Error Amp.6 + - PWM Comp.6

6 5 Drive 6 4 OUT1-6 7 VB6 CB1-6
CB2-6
C
IN(C)6 9 +IN(E)6 10
0.6 V
- +
SCP Comp.6
GND(O)4, 5, 6 61 8 SCP Comp.
OVP5, 6
13 SCP
- +
VCC Comp.
1.5 V 1 A CS 26 Buff Soft Start Comp.
- - - +
0.65 V
1 A CSCP 23
- +
-1.35 V -0.65 V -1.35 V -0.65 V 28
VCC CTL1 30
1.5 V
SCP
UVLO
OSC
Ref
Power ON/OFF 25 24 GND1 GND2
1.5 V 22 21 27 RT CT VREF
6
MB3825A
* Enlarged view of A

FB1 38 39 -IN(E)1 - + + 1.5 V 70 mV 40 IN(C)1 - + 1.5 V SCP Comp.1 + - PWM Comp.1-2 Drive 1-2 Error Amp.1 + - PWM Comp.1-1 Drive 1-1
VCC(O)1, 3 42 CB1-1 44 45 CB2-1 46 OUT1-1 41 VB1 43 OUT2-1

FB2 35 36 -IN(E)2 - + + 1.5 V Error Amp.2 PWM Comp.2 + - Drive 2
VCC(O)2 51 CB1-2 48 49 CB2-2 50 OUT1-2 47 VB2
IN(C)2
37
- +
SCP Comp.2
1.5 V
7
MB3825A
* Enlarged view of B

FB3 32 33 -IN(E)3 - + 1.5 V CTL2 29 IN(C)3 34 - + 1.5 V 31 SCP Comp.3 53 GND(O)1, 2, 3 52 VB3 Error Amp.3 + + - PWM Comp.3 Drive 3 CB1-3 54 55 56 OUT1-3 CB2-3
DTC3

FB4 20 19 -IN(E)4 - + + 1.5 V 70 mV SCP Comp.4 + - PWM Comp.4-2 Drive 4-2 Error Amp.4 PWM Comp.4-1 + - Drive 4-1
VCC(O)4, 5, 6 63 CB1-4 59 58 57 OUT1-4 62 VB4 60 OUT2-4 CB2-4
IN(C)4
18
- +
1.5 V
8
MB3825A
* Enlarged view of C
FB5 17 16 -IN(E)5 - + + Error Amp.5 PWM Comp.5 + -

2 1 Drive 5 64 OUT1-5 3 VB5 CB1-5
CB2-5
IN(C)5 14 15 +IN(E)5
0.6 V - +
SCP Comp.5
FB6 12 11 -IN(E)6 - + + Error Amp.6 + - PWM Comp.6

6 5 Drive 6 4 OUT1-6 7 VB6 CB1-6
CB2-6
IN(C)6 9 +IN(E)6 10
0.6 V
- +
SCP Comp.6
GND(O)4, 5, 6 61 8 SCP Comp.
OVP5, 6
13 SCP
- +
VCC Comp.
1.5 V 1 A CS 26 Buff Soft Start Comp.
- - - +
0.65 V
1 A CSCP 23
- +
-1.35 V -0.65 V -1.35 V -0.65 V 28
VCC CTL1 30
1.5 V
SCP
UVLO
OSC
21 RT
Ref
Power ON/OFF 25 24 GND1 GND2
1.5 V 22 27 CT VREF
9
MB3825A
s ABSOLUTE MAXIMUM RAGINGS
Rating Min -55 Max 17 50 200 800* +125
Parameter Power supply voltage Output current Output peak current Power dissipation Storage temperature
Symbol VCC Io Io PD Tstg
Conditions OUT terminal OUT terminal, Duty 5% Ta +25 C
Unit V mA mA mW C
* : The packages are mounted on the epoxy board (10 cm x 10 cm) . WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.
s RECOMMENDED OPERATING CONDITIONS
Value Min 2.5 -1 0 0 2 2.7 50 50 20 -30 Typ 6.0 5.6 500 100 39 0.1 0.1 +25 Max 12 0 VCC - 0.9 12 20 30 800 1500 82 1.0 1.0 +85
Parameter Power supply voltage Reference voltage output current Input voltage Control input voltage Output current Output current setting resistor Oscillator frequency Timing capacitor Timing resistor Soft-start capacitor Short detection capacitor Operating ambient temperature
Symbol VCC IOR VIN VCTL IO RB fOSC CT RT CS CSCP Ta
Conditions -IN (E) , IN (C) , OVP terminal CTL terminal Main side OUT terminal
Unit V mA V V mA k kHz pF k F F C
WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges. Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure. No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.
10
MB3825A
s ELECTRICAL CHARACTERISTICS
(VCC = VCC (O) = +6 V, Ta = +25C) Parameter Reference voltage Reference voltage block Output voltage temperature stability Input stability Load stability Short-circuit output current Under voltage lockout protection circuit block (U.V.L.O) Soft-start block Short circuit detection block Threshold voltage Hysteresis width Reset voltage Input standby voltage Charge current Threshold voltage Input standby voltage Input latch voltage Input source current Oscillator frequency Triangular wave oscillator block Symbol VREF VREF /VREF Line Load IOS VTH VH VRST VSTB ICS VTH VSTB VI ICSCP fOSC Pin No. 27 27 27 27 27 46 46 46 26 26 23 23 23 23 46, 50, 56, 57, 64, 4 46, 50, 56, 57, 64, 4 46, 50, 56, 57, 64, 4 Conditions Ta = -30 C to +85 C VCC = 2.5 V to 12 V VREF = 0 mA to -1 mA VREF = 2 V VCC = CT = 100 pF, RT = 39 k VCC = 2.5 V to 12 V Value Min 1.485 -10 1.8 -1.4 0.65 -1.4 450 Typ 1.500 0.5* 2 2 -6 2.1 0.1 2.0 50 -1.0 0.70 50 50 -1.0 500 Max 1.515 10 10 -1 100 -0.6 0.75 100 100 -0.6 550 Unit V % mV mV mA V V V mV A V mV mV A kHz
Frequency stability for voltage Frequency stability for temperature
f/fdv
1
10
%
f/fdt
Ta = -30 C to +85 C
1*
%
* : Standard design value.
(Continued)
11
MB3825A
(VCC = VCC (O) = +6 V, Ta = +25C) Parameter Threshold voltage VT temperature stability Input bias current Voltage gain Frequency bandwidth
Symbol
Pin No 38, 35, 32, 20 38, 35, 32, 20 39, 36, 33, 19 38, 35, 32, 20 38, 35, 32, 20 38, 35, 32, 20 38, 35, 32, 20 38, 35, 32, 20 38, 20 35, 32 17, 12 15, 10 16, 11 8
Conditions FB = 1.0 V Ta = -30 C to +85 C -IN = 0 V DC AV = 0 dB FB = 1.0 V FB = 1.0 V (CH1, CH4) FB = 1.0 V (CH2, CH3) FB = 1.0 V
Value Min 1.45 -200 60 1.45 60 60 -1 Typ 1.50 0.5* -20 75 1.0* 1.55 20 -2.0 120 130 9 -40 -20 -40 75 1.0* 1.55 20 -2.0 130 1.50 -20 Max 1.55 200 -0.6 19 VCC - 0.9 200 -0.6 1.55
Unit V % nA dB MHz V mV mA A A mV nA nA nA V dB MHz V mV mA A V nA
VTH
VT/VT
IB AV BW VOM+ VOM- IO- IO+ VIO IB
Error amplifier block (CH1 to CH4)
Maximum output voltage width
Output source current Output sink current Input offset voltage Input bias current Error amplifier bolck (CH5, CH6) Common mode input voltage range Voltage gain Frequency bandwidth Maximum output voltage width Output source current Output sink current SCP Threshold voltage Comp. block (CH1 to Input bias current CH4, SCP) * : Standard design value.
+IN = 0 V, +IN (E) terminal -400 -IN = 0 V, -IN (E) terminal -200 OVP = 0 V, OVP terminal DC AV = 0 dB FB = 1.0 V FB = 1.0 V -400 0 60 1.45 60 1.45 -200
VCM AV BW VOM+ VOM- IO IO
- +
17, 12 17, 12 17, 12 17, 12 17, 12 17, 12 17, 12 46, 50, 56, 57
VTH IB
40, 37, IN (C) = SCP = 0 V 34, 18, 13
(Continued)
12
MB3825A
(VCC = VCC (O) = +6 V, Ta = +25C) Parameter SCP Comp. block (CH5, CH6) PWM Comp. block (CH1 to CH6) Dead time control block (CH3) (DTC terminal) Input offset voltage Input bias current Common mode input voltage range Symbol VIO IIN+ VCM Pin No 64, 4 14, 9 64, 4 46, 50, 56, 57, 64, 4 46, 50, 56, 57, 64, 4 31 31 31 46, 50, 56, 57, 64, 4 46, 50, 56, 57, 64, 4 43, 60 43, 60 43, 60 43, 60 27 27 30 46, 50, 56 28 42, 51, 63 28, 42, 51, 63 Conditions IN (C) = 0 V Duty cycle = 0% Value Min 0.55 -400 0 Typ 0.60 -40 Max 0.65 VCC - 0.9 Unit V nA V
VT0 Threshold voltage VT100 Input bias current Sink current at CTL2 = "L" Input voltage at CTL2 = "L" IB IIDTC VIDTC IO-
0.55
0.65
V
Duty cycle = 100% DTC = 0.4 V DTC = 1.5 V CTL2 = 0 V IDTC = 40 A CTL2 = 0 V Duty cycle 5%
-1.0 80
1.35 -0.2 500 0.2 -100
1.45 0.3
V A A V
Main side Output source current output block (CH1 to CH6) Output sink current (Drive-1) SynchroOutput source current nous rectifier side output Output sink current block (CH1, Output voltage CH4) (Drive-2) Control block CTL input condition Input current VCC Comp. Threshold voltage block
mA
IO+ IO- IO+ VOH VOL VON VOFF ICTL VTH ICCS
RB = 5.6 k Duty cycle 5%, VO = 2 V Duty cycle 5%, VO = 1 V IC active mode IC standby mode CTL = 5 V VCC terminal, CTL = 0 V VCC (O) terminal, CTL = 0 V
7 3.5 2.1 0 VCC - 0.70
10 -70 70 4.0 0 100 VCC - 0.65 6.3
13 0.1 12 0.7 200 VCC - 0.60 10 10 9.0
mA
mA mA V V V V A V A A mA
Standby current General Power supply current * : Standard design value. ICCS (O) ICC
13
MB3825A
s TYPICAL CHARACTERISTICS
Power supply current vs. power supply voltage
10.0
Reference voltage vs. power supply voltage
2.5
Power supply current ICC (mA)
Reference voltage VREF (V)
Ta = +25 C VCTL1, 2 = 6 V 8.0
Ta = +25 C
2.0
6.0
1.5
4.0
1.0
2.0
0.5
0.0 0
5
10
15
20
0.0
0
5
10
15
20
Power supply voltage VCC (V) Reference voltage vs. power supply voltage
2.5 Ta = +25 C
Power supply voltage VCC (V) Reference voltage vs. ambient temperature
1.55 VCC = 6 V 1.54 VCTL1, 2 = 6 V 1.53 IO = 0 mA 1.52 1.51 1.50 1.49 1.48 1.47 1.46 1.45 -50 -25 0 25 50 75 100
Reference voltage VREF (V)
2.0
1.5
1.0
0.5
0.0
0
1
2
3
4
5
Reference voltage VREF (V)
Power supply voltage VCC (V) Reference voltage vs. control voltage
2.0 500 Ta = +25 C VCC = 6 V 1.5
Ambient temperature Ta (C) Control current vs. control voltage
Ta = +25 C VCC = 6 V
Reference voltage VREF (V)
Control current ICTL1 (A)
2 3 4 5
400
300
1.0
200
0.5
100
0.0
0
1
0 0
5
10
15
20
Control voltage VCTL1 (V)
Control voltage VCTL1 (V)
(Continued)
14
MB3825A
Control current vs. control voltage
Ta = +25 C VCC = 6 V VCTL1 = 6 V
Triangular wave upper and lower limit voltage vs. timing capacitor Triangular wave upper and lower limit voltage VCT (V)
1.6 Ta = +25 C VCC = 6.0 V RT = 39 k
500
Control current ICTL2 (A)
400
1.4
Upper
300
1.2
200
1.0
Lower
100
0 0
5
10
15
20
0.8 10
102
103
104
Control voltage VCTL2 (V) CT1, CT2 oscillator frequency fOSC (Hz) Triangular wave time vs. timing capacitor
100 Ta = +25 C VCC = 6 V RT = 39 k
Timing capacitor CT (pF) Oscillator frequency vs. timing resistor
10 M CT = 47 pF CT = 100 pF CT = 150 pF CT = 300 pF CT = 1500 pF Ta = +25 C VCC = 6.0 V
Triangular wave time (s)
1M
10
100 k
1
10 k
0 10
102
103
104
1k 1k
10 k
100 k
1M
Timing capacitor CT (pF) Triangular wave frequency stability vs. ambient temperature Triangular wave frequency stability (%)
15 VCC = 6.0 V CT = 100 pF 10 RT = 39 k 5 0 -5 -10 -15 -50
Timing resistor RT () Triangular wave upper and lower limit voltage vs. ambient temperature
1.7 VCC = 6.0 V 1.6 RT = 39 k CT = 100 pF 1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.8 0.7 -50 -25 0 25 50 75 100
Triangular wave upper and lower limit voltage VCT (V)
upper
lower
-25
0
25
50
75
100
Ambient temperature Ta ( C)
Ambient temperature Ta ( C)
(Continued)
15
MB3825A
Duty vs. oscillator frequency (ch1)
100 Ta = +25 C 90 VCC = 6.0 V VFB = 1.0 V 80 100
Duty vs. oscillator frequency (ch4)
Ta = +25 C 90 VCC = 6.0 V VFB = 1.0 V 80 70 60 50 40 30 20 10
Duty Dtr (%)
60 50 40 30 20 10 0 1k 10 k 100 k 1M 10 M
Duty Dtr (%)
70
0 1k
10 k
100 k
1M
10 M
Oscillator frequency fOSC (Hz)
Oscillator frequency fOSC (Hz)
Output sink current vs. output sink current setting resistor
20
Output sink current IO (mA)
18 16 14 12 10 8 6 4 2 0 0 5 10 15 20
Ta = +25 C VCC = 6.0 V
25
30
Output sink current setting resistor RB (k)
(Continued)
16
MB3825A
(Continued)
Error amplifier gain and phase vs. frequency (ch1)
40 Ta = +25 C 180 VCC = 6 V
Gain AV (dB)
AV
Phase (deg)
20
90
4.7 k IN - + 2.4 k 10 F 4.7 k VREF CS 39 26
240 k - + +
0
0
38 OUT
-20 -40 1k 10 k 100 k 1M
-90
-180 10 M
Frequency f (Hz) Error amplifier gain and phase vs. frequency (ch5)
40 Ta = +25 C 180 3V
Gain AV (dB)
AV
Phase (deg)
20
90
0
0
4.7 k IN - + 10 F 4.7 k
4.7 k 2.4 k
VCC = 6 V 240 k
-20 -40 1k 10 k 100 k 1M
-90 -180 10 M
4.7 k
16 - 15 + 8+ 6V
17 OUT
Frequency f (Hz) Power dissipation vs. ambient temperature
1000
Power dissipation PD (mW)
800
600
400
200
0 -50
-25
0
25
50
75
100
Ambient temperature Ta ( C)
17
MB3825A
s FUNCTIONAL DESCRIPTION
1. Switching Regulator Function
(1) Reference voltage circuit The reference voltage circuit generates a temperature-compensated reference voltage ( 1.500 V) using the voltage supplied from the power supply terminal (pin 28) . This voltage is used as the reference voltage for the internal circuits of the IC. The reference voltage of up to 1 mA can also be supplied to an external device from the VREF terminal (pin 27) . (2) Triangular-wave oscillator circuit By connecting a timing capacitor and a resistor to the CT (pin 22) and the RT (pin 21) terminals, it is possible to generate any desired triangular oscillator waveform (CT : amplitude 1.0 V to 1.4 V, CT1 : amplitude 0.65 V to 1.35 V in phase with CT1, and CT2 : amplitude 0.65 V to 1.35 V in inverse phase with CT) . The triangular wave is input to CT1, CT2 and the PWM comparator within the IC. (3) Error amplifier This amplifier detects the output voltage of the switching regulator and outputs a PWM control signal accordingly. It has a wide common-mode input voltage range from 0 V to VCC - 0.9 V on channels 5 and 6 allows easy setting from an external power supply, making the system suitable for DC motor speed control. By connecting a feedback resistor and capacitor from the error amplifier output terminal to the inverted input terminal, you can form any desired loop gain, for stable phase compensation. (4) PWM comparator The PWM comparators in these channels are a voltage comparator with one inverted input and one non-inverted input (channels 1, 2, 4, 5, 6) as well as one inverted input and two non-inverted inputs (channel 3) , and voltage pulse width modifier to control output duty according to input voltage. In the interval when the error amplifier output voltage is higher than the triangular waveform, the output transistor is turned on (channels 1, 2, 4, 5, 6) . In the interval when the error amplifier output voltage is lower than the triangular waveform, the output transistor is turned on (channel 1, 4 synchronous rectifier side) . In the interval when the error amplifier output voltage and DTC3 voltage are higher than the triangular waveform, the output transistor is switched on (channel 3) . (5) Output circuit The output circuits is comprised of a totem-pole configuration on both the main side and synchronous rectifier side, and can drive an external PNP transistor (main side) or N-ch MOSFET (synchronous rectifier side) . Sink current (on the main side) can be set up to 20 mA depending on the resistance of the VB terminal.
2. Channel Control Function
Channel on and off levels are dependent on the voltage levels of the CTL1 terminal (pin 30) and CTL 2 terminal (pin 29) . Table 1 Channel by Channel On/Off Setting Conditions. CTL terminal voltage level CTL1 L H CTL2 X L H On/Off state of channel Power supply Channel 1 Channel 2 Channel 4 Channel 5 Channel 6 circuit OFF (standby mode) * ON OFF ON Channel 3
* : The power supply current in standby mode is 10 A or less. 18
MB3825A
3. Protective Functions
(1) Timer-latch short-circuit protection circuit The short detection comparator in each channel detects the output voltage level, and when any channel output voltage falls below the short detection voltage, or the SCP terminal (pin 13) voltage falls below the reference voltage, the timer circuit starts operating and the capacitor CSCP connected to the CSCP terminal (pin 23) starts charging. When the capacitor charge reaches approximately 0.7 V, the output transistor is turned off and the idle interval becomes 100%. When actuated, this protection circuit can be reset by turning on the power supply again. (See "METHOD OF SETTING TIME CONSTANT FOR TIMER-LATCH SHORT PROTECTION CIRCUIT".) (2) Under voltage lockout protection circuit A transient state at power-on or a momentary drop of the power supply voltage causes the control IC to malfunction, resulting in system breakdown or system deterioration. By detecting the internal reference voltage with respect to the power supply voltage, this protection circuit resets the latch circuit to turn off the output transistor and set the duty (OFF) = 100%, while at the same time holding the CSCP terminal (pin 23) at the "L". The reset is cleared when the power supply voltage becomes greater than or equal to the threshold voltage level of this protection circuit. (3) Output Supply Monitor Comparator (Vcc Comp.) The output supply monitor comparator compares the output circuit power supply (VCC (O) 1, 3, VCC (O) 2, VCC (O) 4, 5, 6) to the VCC level, and operates the timer-latch short protection circuit if any of the output circuit power supplies fall below Vcc - 0.65 V.
19
MB3825A
s METHODS OF SETTING THE OUTPUT VOLTAGE
Figure 1. CH1 to CH4
VO VO = R1 VO > Error Amp1 1.5 V (R1 + R2 + R3) R3 1.5 V R2 + R3 (R1 + R2 + R3)
R2 39 R3 -IN (E) 1 - + + 1.5 V
40 IN (C) 1
- + 1.5 V
SCP Comp1
Figure 2. CH5 and CH6
VO FB5 17 R1 16 R2 -IN (E)5 - + + Error Amp5 VO = V+IN (E) 5 (R1 + R2) R2
VOVP5, 6 > V+IN (E) 5 VOVP5, 6 (R1 + R2) R2
VO =
VOVP5, 6 < V+IN (E) 5
IN (C) 5 14
Motor control signal
0.6 V - +
SCP Comp5
15 +IN (E) 5 8 OVP5, 6
20
MB3825A
s METHOD OF SETTING THE OUTPUT CURRENT
Figure 3 shows the configuration of the output circuits, and Figure 4 illustrates how the sink current value of the output current waveform has a constant current setting. Note that the sink current is set by the following formula * Sink current = (VB/RB) x 60 56/RB [A] Figure 3. Output circuit (main side)
VB RB VCC(O) VB
External PNP transistor
Output ON base current speed-up
100 k
Source current
CB1 OUT1
10 k
To PWM comparator
Output OFF driver
CB2
Sink current
x1
x 60 GND (O)
Figure 4. Output current waveform Speed-up current Sink current
Output current
0
Source current (peak)
t
21
MB3825A
Note : Output current setting resistance RB1 to RB6 should be connected to each channel as shown in Figure 5 below. * For channel 1 and 3, connect the respective VB terminals to VCC (O) 1, 3 through the setting resistor RB. * For channel 2, connect the VB2 terminal to VCC (O) 2 through setting resistor RB2. * For channels 4 to 6, connect the respective VB terminals to VCC (O) 4, 5, 6 through setting resistor RB. Figure 5. Output sink current setting pin connections
VCC(O) 1, 3 VB1 VB3 VCC(O) 2 MB3825A VB2 VCC(O) 4, 5, 6 VB4 VB5 VB6 RB4 RB5 RB6 RB2 RB1 RB3
s OSCILLATOR FREQUENCY SETTING
The oscillator frequency can be set by connecting a timing capacitor (CT) to the CT terminal (pin 22) and a timing resistor (RT) to the RT terminal (pin 21) . Oscillator frequency : fOSC fOSC (kHz) 1950000 CT (pF) *RT (k)
22
MB3825A
s METHOD OF SETTING TIME CONSTANT FOR TIMER-LATCH SHORT PROTECTION CIRCUIT
The short detection comparator (SCP comparator) in each of the channels constantly compares the error amplifier output level to the reference voltage and the SCP terminal (pin 13) . While the switching regulator load conditions are stable on all channels, or when the voltage level at the SCP terminal is higher than the reference voltage, the short detection comparator output remains at "L" level, transistor Q3 is turned on, and the CSCP terminal (pin 23) is held at input standby voltage (VSTB 50 mV) . If the load conditions change rapidly due to a short-circuiting of load, causing the output voltage to drop, or if the voltage at the SCP terminal falls below the reference voltage level, the output from the short detection comparator on the corresponding channel or the input at the SCP terminal goes to "H" level. This causes transistor Q3 to turn off and the external short protection capacitor CSCP connected to the CSCP terminal to charge at 1.0 A. Short Detection Time (tPE) tPE (s) 0.7 x CSCP (F) When the capacitor CSCP is charged to the threshold voltage VTH 0.7 V the SR latch is set, and the external PNP is turned off (inactive interval is set to 100%) . At this point the SR latch input is closed and the CSCP terminal is held at input latch voltage (VI 50 mV) . Figure 6. Protection timer-latch short protection circuit External PNP transistor
A
R1 40 R2 IN (C) 1 + 1.5 V R3 13 SCP 1.5 V 1 A CS 26 Buff - + -
SCP Comp.1
Output stage Output stage
46 OUT1-1
43 OUT2-1
SCP Comp.
Output stage
56 OUT1-3
Q2
Soft Start Comp.
- +
Output stage
4 OUT1-6 29 CTL2 28 VCC
CSCP 23
1 A
1.5 V bias S R UVLO bias
CSCP
Q1
Timer-latch Q3 short circuit protection circuit
Ref
Power ON/OFF
30 CTL1 27 VREF
23
MB3825A
s TREATMENT WITHOUT USING CSCP
When you do not use the timer-latch short protection circuit, connect the CSCP terminal (pin 23) to GND with the shortest distance. Figure 7. Treatment when not using CSCP
23 CSCP 24 GND1 25 GND2
24
MB3825A
s METHOD OF SETTING SOFT-START TIME
* Channels 1, 2, 4 To provide a soft-start by preventing current surges at power-on, soft-start capacitor (Cs) can be connected to the CS terminal (pin 26) . When the IC is started (when the CTL1 terminal (pin 30) goes to "H" level, and VCC UVLO threshold voltage) , transistors Q2 switches off and the CS terminal begins charging the external soft-start capacitors (Cs) at 1.0 A. The error amplifier makes a soft-start in a proportion to the output voltage to the CS teminal voltage regardless of the load current on the DC/DC converter. Note that the soft-start time can be calculated by the following formula. Soft-start time (output rise time) tS (s) 1.5 x CS (F) .
Figure 8. Soft-start circuit
A FB1 38 R1 39 R2 -IN (E)1 - + + 1.5 V R3 Error Amp1
External PNP transistor
Output stage Output stage
46 OUT1-1
43 OUT2-1
Output stage
1 A CS 26 Buff
56 OUT1-3
CS
Q2
Soft Start Comp.
- +
Output stage
bias
4 OUT1-6 29 CTL2 28 VCC
CSCP 23
1 A
1.5 V
CSCP Q1
SCP
UVLO
Ref
Power ON/OFF
30 CTL1 27 VREF
25
MB3825A
* Channel 3 The capacitor CDTC3 is placed between the DTC3 terminal (pin 31) and GND, so that when the CTL2 terminal (pin 29) goes from "L" to "H" level, the transistor Q4 is turned off and the output voltage is in proportion to the DTC3 terminal voltage providing the soft-start operation. As the short detection function is not turned off during soft-start operation, this setting should be made under the following condition. Channel 3 soft-start circuit time < Short detection time Figure 9. Channel 3 soft-start circuit
A
FB3 32 Error Amp.3 + + -
External PNP transistor
33 -IN (E) 3
- + 1.5 V
PWM Comp.3
Output stage
56 OUT1-3
H : ON (CH3) CTL2 L : OFF 29 34 IN (C) 3 - + 1.5 V DTC3 34 Rb CDTC3 SCP Comp.3
Q4
To VREF
Ra
To CT1 To CSP
To UVLO
26
MB3825A
s PROCESSING WITHOUT USING CS TERMINAL
If the soft-start function is not used, the CS terminal (pin 26) for channels 1, 2, and 4 should be left open. For channel 3, connect the DTC3 terminal (pin 31) to the VREF terminal (pin 27) . Figure 10. When no soft-start time is set (1, 2, 4 channel)
Open
26 CS
Figure 11. When no soft-start time is set (3 channel)
27 VREF
31 DTC3
27
MB3825A
s METHOD OF SETTING THE DEAD TIME
When the device is set for step-up inverted output based on the flyback method, the output transistor is fixed to full-on state (ON-duty = 100%) at power switch-on.To prevent this problem, you may determine the voltages on the DTC3 terminal (pin 31) from the VREF voltage so you can easily set the output transistor's dead time (maximum ON-duty) independently for each channel as shown Figure.12. When the voltage on the DTC3 terminal is lower than the triangular-wave (CT1) output voltage from the oscillator, the output transistor turns off. The dead time calculation formula assuming that triangular-wave amplitude 0.7 V and triangular-wave maximum voltage 1.35 V is given below. Duty (ON) MAX Vdt - 0.65 0.7 x 100 [%]
When you do not use this DTC3 terminal, connect then to VREF terminal (pin 27) as shown Figure.13.. Figure 12. When using DTC to set dead time
27 VREF Ra 31 DTC3 Vdt Rb
Figure 13. When not using DTC to set dead time
27 VREF
31 DTC3
28
MB3825A
s APPLICATION EXAMPLE
* General view
VFB1 A 13.5 k 3.5 k 15 k 0.033 F VOUT1-1 10 H 4.7 F VC1 A 68 H VO1 VO1(3.2 V)

FB1 38 - + + 1.5 V 70 mV 40 IN(C)1 - + 1.5 V SCP Comp.1 + - PWM Comp.1-2 Drive 1-2 Error Amp.1 + - Drive 1-1 PWM Comp.1-1
39 -IN(E)1
VCC(O)1, 3 42 CB1-1 44 560 pF 45 CB2-1 46 OUT1-1 41 VB1 43 OUT2-1 22 k
FMMT717
2SK2316
6.8 F U1FWJ44N
30
VOUT2-1 10 H 4.7 F
B 23.5 k 12 k 15 k 0.033 F

FB2 35 - + + 1.5 V Error Amp.2 PWM Comp.2 - + Drive 2
36 -IN(E)2
VCC(O)2 51 CB2-2 48 560 pF 49 CB1-2 50 OUT1-2 47 VB2 22 k
B 33 H 6.8 F U1FWJ44N
VO2(5.05 V)
A
FMMT717
50
IN(C)2
37
- +
SCP Amp.2
1.5 V
C 42.5 k 2.5 k 5 k 0.033 F
C

FB3 32 - + 1.5 V CTL2 H : ON(CH3) 29 L : OFF 34 IN(C)3 30 k 120 k 10 H 52 VB3 - + 1.5 V 31 SCP Comp.3 GND(O)1, 2, 3 53 Error Amp.3 PWM Comp.3 + + - Drive 3 CB1-3 54 560 pF 55 56 OUT1-3 22 k CB2-3 2.2 F 2SB1121 1SS196
VO3(15 V)
33 -IN(E)3
750
DTC3
B
4.7 F D 33 H VO4(4.89 V) FMMT717
D 13.5 k 7.5 k 9.3 k 0.033 F
VCC(O)4, 5, 6

FB4 20 - + + 1.5 V SCP Comp.4 Error Amp.4 PWM Comp.4-1 + - 70 mV + - PWM Comp.4-2 Drive 4-2 Drive 4-1
63 CB1-4 59 560 pF 58 57 OUT1-4 22 k 62 VB4 60 OUT2-4 CB2-4 2SK2316
19 -IN(E)4
6.8 F U1FWJ44N 50
IN(C)4
18
- +
1.5 V E E 30 k 15 k FB5 17 - + + Error Amp.5 + - Drive 5 PWM Comp.5

2 1 64 OUT1-5 3 VB5 22 k CB1-5 560 pF CB2-5 FMMT717 47 H 2.2 F
VO5(4.5 V)
0.033 F
16 -IN(E)5
U1FWJ44N 100
IN(C)5 14 15 +IN(E)5 VIN (6 V) FB6 12
0.6 V - +
SCP Comp.5
F

- + + Error Amp.6 + - Drive 6 PWM Comp.6 6 5 4 OUT1-6 22 k 7 VB6 CB1-6 560 pF CB2-6 FMMT717 47 H 2.2 F
VO6(4.5 V)
F 30 k 15 k
0.033 F
11 -IN(E)6
U1FWJ44N 100
IN(C)6 9 +IN(E)6 10
0.6 V
- +
SCP Comp.6
C
GND(O)4, 5, 6 61 8 SCP Comp.
OVP5, 6
Over voltage threshold setting voltage
13 SCP
- +
VCC Comp.
1.5 V 1 A CS 26 0.1 F Buff Soft Start Comp.
- - - +
0.65 V
FMMT717 : ZETEX plc. 2SB1121 : SANYO Electric Co., Ltd. 2SK2316 : SANYO Electric Co., Ltd. 1SS196 : TOSHIBA CORPORATION U1FWJ44N : TOSHIBA CORPORATION
10 H 4.7 F
1 A CSCP 0.1 F 23
- + 1.5 V
-1.35 V -0.65 V -1.35 V -0.65 V 28
VCC CTL1 30
SCP
UVLO
RT 39 k
OSC
21 22 CT
Ref
1.5 V
Power ON/OFF
25 24 27 VREF GND1 GND2 100 pF VCT
H : ON (CH1, 2, 4 to 6) L : OFF (standby state)
29
30
MB3825A
VFB1 10 H 4.7 F A VO1(3.2 V) 68 H VO1
VOUT1-1
VC1
A
* Enlarged view of A
13.5 k FB1 38 FMMT717 Error Amp.1 + - OUT1-1 22 k 41 + - OUT2-1 VOUT2-1 10 H 4.7 F PWM Comp.1-2 Drive 1-2 43 VB1 2SK2316 70 mV - + 1.5 V SCP Comp.1 Drive 1-1 46 6.8 F U1FWJ44N PWM Comp.1-1

3.5 k - + + 1.5 V
0.033 F
15 k
39 -IN(E)1
VCC(O)1, 3 42 CB1-1 44 560 pF 45 CB2-1 30
40 IN(C)1
B
B 33 H FMMT717 6.8 F U1FWJ44N
23.5 k FB2 35 Error Amp.2 - + 47 - + 1.5 V SCP Amp.2 VB2 Drive 2 50 OUT1-2 22 k PWM Comp.2

VO2(5.05 V)
12 k - + + 1.5 V
0.033 F
15 k
36 -IN(E)2
VCC(O)2 51 CB2-2 48 560 pF 49 CB1-2
50
IN(C)2
37
H : ON (CH1, 2, 4 to 6) L : OFF (standby state)
FMMT717 : ZETEX plc. 2SB1121 : SANYO Electric Co., Ltd. 2SK2316 : SANYO Electric Co., Ltd. 1SS196 : TOSHIBA CORPORATION U1FWJ44N : TOSHIBA CORPORATION
C C
42.5 k FB3 32 CB1-3 54 560 pF 55 CB2-3 OUT1-3 22 k 52 VB3 - + 1.5 V 31 10 H VCC(O)4, 5, 6 53 SCP Comp.3 GND(O)1, 2, 3 2.2 F 750 Drive 3 56 2SB1121 1SS196 - + 1.5 V + + - Error Amp.3 PWM Comp.3

VO3(15 V)
* Enlarged view of B
2.5 k 33 -IN(E)3
0.033 F
5 k
CTL2 H : ON(CH3) 29 L : OFF 34 IN(C)3
30 k DTC3
120 k 4.7 F D 33 H FMMT717 560 pF 58 CB2-4 OUT1-4 22 k 62 VB4 Drive 4-2 60 OUT2-4 2SK2316 Drive 4-1 57 6.8 F U1FWJ44N 50 VO4(4.89 V)
D
13.5 k 63 CB1-4 Error Amp.4 PWM Comp.4-1 + - 70 mV SCP Comp.4 - PWM Comp.4-2 + 59 FB4 20

7.5 k 19 -IN(E)4 1.5 V - + +
0.033 F
9.3 k
IN(C)4 + 1.5 V
18
-
MB3825A
H : ON (CH1, 2, 4 to 6) L : OFF (standby state)
FMMT717 : ZETEX plc. 2SB1121 : SANYO Electric Co., Ltd. 2SK2316 : SANYO Electric Co., Ltd. 1SS196 : TOSHIBA CORPORATION U1FWJ44N : TOSHIBA CORPORATION
31
32
E

2 560 pF 1 CB2-5 U1FWJ44N 100 22 k OUT1-5 3 VB5 Drive 5 64 2.2 F CB1-5 FMMT717 47 H Error Amp.5 PWM Comp.5 + -
VO5(4.5 V)
E 16 -IN(E)5
30 k - + +
0.033 F
FB5 17
MB3825A
* Enlarged view of C
15 k
IN(C)5 14 15 +IN(E)5 + -
0.6 V
SCP Comp.5
VIN (6 V)
F

Error Amp.6 560 pF 5 CB2-6 OUT1-6 22 k 7 VB6 Drive 6 4 + - PWM Comp.6 6 CB1-6 FMMT717 47 H 2.2 F
VO6(4.5 V)
F 11 -IN(E)6
30 k - + +
0.033 F
FB6 12
15 k
U1FWJ44N 100
IN(C)6 9 +IN(E)6 OVP5, 6 8 13 SCP + 1.5 V 1 A CS 26 Buff Soft Start Comp. - + 1.5 V - VCC Comp. SCP Comp. 61 10 + -
0.6 V
SCP Comp.6
GND(O)4, 5, 6
Over voltage threshold setting voltage
- - - +
0.65 V
0.1 F 1 A CSCP 23
10 H VCC 28 4.7 F CTL1
-1.35 V -0.65 V -1.35 V -0.65 V
H : ON (CH1, 2, 4 to 6) L : OFF (standby state)
0.1 F
SCP
UVLO
RT 39 k
OSC
21 22 CT
Ref
1.5 V
Power ON/OFF 25 24 27 VREF GND1 GND2 100 pF VCT
30
FMMT717 : ZETEX plc. 2SB1121 : SANYO Electric Co., Ltd. 2SK2316 : SANYO Electric Co., Ltd. 1SS196 : TOSHIBA CORPORATION U1FWJ44N : TOSHIBA CORPORATION
MB3825A
s REFERENCE DATA
Channel 1 switching operation waveform (operation at 500 kHz)
VIN = 6 V RL = 30 CT = 100 pF RT = 39 k
VC1 (V)
6
4
2
0
0
1
2
3
4
5 t (s)
expansion
VC1 (V)
3
2
1
0
0
0.4
0.8
1.2
1.6
2.0 t (s)
Synchronous rectifier length
150 ns
120 ns
33
MB3825A
Channel 1 main side output waveform (operation at 500 kHz)
VC1 VC1 (V) 6 4 2 0 VCT VCT (V) VFB1 (V) 1.0 0.5 0 0 1 2 3 4 5 t (s) VFB1 VIN = 6 V RL = 30 CT = 100 pF RT = 39 k
Channel 1 main side base current waveform (operation at 500 kHz)
IOUT1-1 (mA) 60 40 IOUT1-1 20 0 -20 VCT VCT (V) VFB1 (V) 1.0 0.5 0 0 1 2 3 4 5 t (s) VFB1 -40 -60 -80 -100 VIN = 6 V RL = 30 CT = 100 pF RT = 39 k
Peak current when turned ON 42 mA Peak current when turned OFF 50 mA
(Continued)
34
MB3825A
(Continued)
Channel 1 synchronous rectifier side output waveform (operation at 500 kHz)
VIN = 6 V RL = 30 CT = 100 pF RT = 39 k
VC1 (V)
6 4 2 0
VOUT2-1 (V) 6 4 2 0 0 1 2 3 4 5 t (s)
Channel 1 synchronous rectifier side output waveform (operation at 500 kHz)
IOUT2-1 (mA) 60 40 20 0 -20 -40 VOUT2-1 (V) 4 2 0 0 1 2 3 4 5 t (s) VIN = 6 V RL = 30 CT = 100 pF RT = 39 k
Output source current peak value 30 mA Output sink current peak value 52 mA
35
MB3825A
s NOTES ON USE
* Take account of common impedance when designing the earth line on a printed wiring board. * Take measures against static electricity. - For semiconductors, use antistatic or conductive containers. - When storing or carrying a printed circuit board after chip mounting, put it in a conductive bag or container. - The work table, tools and measuring instruments must be grounded. - The worker must put on a grounding device containing 250 k to 1 M resistors in series. * Do not apply a negative voltage - Applying a negative voltage of -0.3 V or less to an LSI may generate a parasitic transistor, resulting in malfunction.
s ORDERING INFORMATION
Part number MB3825APFV MB3825APFF Package 64-pin plastic LQFP (FPT-64P-M03) 64-pin plastic LQFP (FPT-64P-M20) Remarks
36
MB3825A
s PACKAGE DIMENSION
64-pin Plastic LQFP (FPT-64P-M03)
12.000.20(.472.008)SQ
* 10.000.10(.394.004)SQ
48 33
Note 1)* : These dimensions do not include resin protrusion. Note 2)Pins width and pins thickness include plating thickness. Note 3)Pins width do not include tie bar cutting remainder.
0.1450.055 (.006.002)
49
32
Details of "A" part 0.08(.003) 1.50 -0.10 .059 -.004
+0.20 +.008
(Mounting height)
INDEX
64 17
0~8 "A" 0.500.20 (.020.008) 0.600.15 (.024.006)
0.100.10 (.004.004) (Stand off)
0.25(.010)
LEAD No.
1
16
0.50(.020)
0.200.05 (.008.002)
0.08(.003)
M
C
2003 FUJITSU LIMITED F64009S-c-5-8
Dimensions in mm (inches) . Note : The values in parentheses are reference values.
37
MB3825A
64-pin Plastic LQFP (FPT-64P-M20)
9.000.20(.354.008)SQ 7.000.20(.276.008)SQ
48 33
1.60(.063)MAX 1.400.10 (.055.004) 0.100.10 (.004.004)
49
32
Details of "A" part
0.10(.004) INDEX
(1.00(.039))
64
17
1
16
"A" 3.53.5 0.127(.005)
0.500.20 (.020.008)
0.40(.016)
0.160.03 (.006.001)
C
2000 FUJITSU LIMITED F64031S-1c-1
Dimensions in mm (inches) . Note : The values in parentheses are reference values.
38
MB3825A
FUJITSU LIMITED
All Rights Reserved. The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering. The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of Fujitsu semiconductor device; Fujitsu does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information. Fujitsu assumes no liability for any damages whatsoever arising out of the use of the information. Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of Fujitsu or any third party or does Fujitsu warrant non-infringement of any third-party's intellectual property right or other right by using such information. Fujitsu assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein. The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite). Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products. Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions. If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.
F0308 (c) FUJITSU LIMITED Printed in Japan


▲Up To Search▲   

 
Price & Availability of MB3825A

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X